Iowa State University engineers have developed a new flexible, stretchable and tunable "meta-skin" that uses rows of small, liquid-metal devices to cloak an object from the sharp eyes of radar.Galinstan is the metal in modern "Mercury" thermometers.
The meta-skin takes its name from metamaterials, which are composites that have properties not found in nature and that can manipulate electromagnetic waves. By stretching and flexing the polymer meta-skin, it can be tuned to reduce the reflection of a wide range of radar frequencies.
The journal Scientific Reports recently reported the discovery online. Lead authors from Iowa State's department of electrical and computer engineering are Liang Dong, associate professor; and Jiming Song, professor. Co-authors are Iowa State graduate students Siming Yang, Peng Liu and Qiugu Wang; and former Iowa State undergraduate Mingda Yang. The National Science Foundation and the China Scholarship Council have partially supported the project.
"It is believed that the present meta-skin technology will find many applications in electromagnetic frequency tuning, shielding and scattering suppression," the engineers wrote in their paper.
Dong has a background in fabricating micro and nanoscale devices and working with liquids and polymers; Song has expertise in looking for new applications of electromagnetic waves.
Working together, they were hoping to prove an idea: that electromagnetic waves - perhaps even the shorter wavelengths of visible light - can be suppressed with flexible, tunable liquid-metal technologies.
What they came up with are rows of split ring resonators embedded inside layers of silicone sheets. The electric resonators are filled with galinstan, a metal alloy that's liquid at room temperature and less toxic than other liquid metals such as mercury.
Those resonators are small rings with an outer radius of 2.5 millimeters and a thickness of half a millimeter. They have a 1 millimeter gap, essentially creating a small, curved segment of liquid wire.
The rings create electric inductors and the gaps create electric capacitors. Together they create a resonator that can trap and suppress radar waves at a certain frequency. Stretching the meta-skin changes the size of the liquid metal rings inside and changes the frequency the devices suppress.
If this works, I expect to see covers on cars to absorb the radar frequencies used by speed radars.
Because these radars operate over a fairly narrow bands, it's not a particularly demanding application, and radar absorbent car bras has been a kind of holy grail in the industry.
No comments:
Post a Comment